

Planar Graphical Models which are Easy

Michael Chertkov

Center for Nonlinear Studies & Theory Division, LANL

In collaboration with V. Chernyak (Wayne State)

February 12, 2009

UCSD, ITA '09

Outline

- Introduction
 - Graphical Models
 - Easy and Difficult
 - Dimer and Ising Models on Planar Graphs
- 2 Planar is not necessarily easy ... but
 - Holographic Algorithms & Gauge Transformations
 - Edge-Binary models of degree ≤ 3
 - Edge-Binary Wick Models (of arbitrary degree)
- 3 Conclusions & Path forward
 - What did we learn?
 - Where do we go from here?

Binary Graphical Models

Forney style - variables on the edges

$$\mathcal{P}(\vec{\sigma}) = Z^{-1} \prod_{a} f_{a}(\vec{\sigma}_{a})$$

$$Z = \sum_{a} \prod_{b} f_{a}(\vec{\sigma}_{a})$$

partition function

$$f_{a} \geq 0$$
 $\sigma_{ab} = \sigma_{ba} = \pm 1$
 $\vec{\sigma}_{1} = (\sigma_{12}, \sigma_{14}, \sigma_{18})$
 $\vec{\sigma}_{2} = (\sigma_{12}, \sigma_{23})$

- Most Probable Configuration = Maximum Likelihood = Ground State: $\arg\max \mathcal{P}(\vec{\sigma})$
- Marginal Probability: e.g. $\mathcal{P}(\sigma_{ab}) \equiv \sum_{\vec{\sigma} \setminus \sigma_{ab}} \mathcal{P}(\vec{\sigma})$
- Partition Function: Z Our main object of interest

Easy & Difficult Boolean Problems

EASY

- Any graphical problems on a tree (Bethe-Peierls, Dynamical Programming, BP, TAP and other names)
- Ground State of a Rand. Field Ferrom. Ising model on any graph
- Partition function of planar Ising & Dimer models
- Finding if 2-SAT is satisfiable
- Decoding over Binary Erasure Channel = XOR-SAT
- Some network flow problems (max-flow, min-cut, shortest path, etc)
- Minimal Perfect Matching Problem
- Some special cases of Integer Programming (TUM)

Typical graphical problem, with loops and factor functions of a general position, is DIFFICULT

Glassy Ising & Dimer Models on a Planar Graph

Partition Function of $J_{ij} \ge 0$ Ising Model, $\sigma_i = \pm 1$

$$Z = \sum_{\vec{\sigma}} \exp\left(\frac{\sum_{(i,j)\in\Gamma} J_{ij}\sigma_i\sigma_j}{T}\right)$$

Partition Function of Dimer Model, $\pi_{ij} = 0, 1$

$$Z = \sum_{ec{\pi}} \prod_{(i,j) \in \Gamma} (z_{ij})^{\pi_{ij}} \prod_{i \in \Gamma} \delta \left(\sum_{j \in i} \pi_{ij}, 1
ight)$$

Ising & Dimer Classics

- L. Onsager, Crystal Statistics, Phys.Rev. 65, 117 (1944)
- M. Kac, J.C. Ward, A combinatorial solution of the Two-dimensional Ising Model, Phys. Rev. 88, 1332 (1952)
- C.A. Hurst and H.S. Green, New Solution of the Ising Problem for a Rectangular Lattice, J. of Chem. Phys. 33, 1059 (1960)
- M.E. Fisher, Statistical Mechanics on a Plane Lattice, Phys.Rev 124, 1664 (1961)
- P.W. Kasteleyn, The statistics of dimers on a lattice, Physics 27, 1209 (1961)
- P.W. Kasteleyn, Dimer Statistics and Phase Transitions, J. Math. Phys. 4, 287 (1963)
- M.E. Fisher, On the dimer solution of planar Ising models, J. Math. Phys. 7, 1776 (1966)
- F. Barahona, On the computational complexity of Ising spin glass models,
 J.Phys. A 15, 3241 (1982)

Pfaffian solution of the Matching problem

$$Z = z_{12}z_{34} + z_{14}z_{23} = \sqrt{\text{Det}\hat{A}} = \text{Pf}[\hat{A}]$$

$$\hat{A} = \begin{pmatrix} 0 & -z_{12} & 0 & -z_{14} \\ +z_{12} & 0 & +z_{23} & -z_{24} \\ 0 & -z_{23} & 0 & +z_{34} \\ +z_{14} & +z_{24} & -z_{34} & 0 \end{pmatrix}$$

Odd-face [Kasteleyn] rule (for signs)

Direct edges of the graph such that for every internal face the number of edges oriented clockwise is odd

Planar Spin Glass and Dimer Matching Problems

The Pfaffian formula with the "odd-face" orientation rule extends to any planar graph thus proving constructively that

- Counting weighted number of dimer matchings on a planar graph is easy
- Calculating partition function of the spin glass Ising model on a planar graph is easy

Planar is generally difficult

[Barahona '82]

- Planar spin-glass problem with magnetic field is difficult
- Dimer-monomer matching is difficult even in the planar case

Outline

- Introduction
 - Graphical Models
 - Easy and Difficult
 - Dimer and Ising Models on Planar Graphs
- 2 Planar is not necessarily easy ... but
 - Holographic Algorithms & Gauge Transformations
 - Edge-Binary models of degree ≤ 3
 - Edge-Binary Wick Models (of arbitrary degree)
- Conclusions & Path forward
 - What did we learn?
 - Where do we go from here?

Are there other graphical models which are easy?

Holographic Algorithms

[Valiant '02-'08]

- reduction to dimers via
- "classical" one-to-one gadgets
- "holographic" gadgets (e.g. ice model to dimer model)
- resulted in discovery of variety of new easy planar models

Gauge Transformations

[Chertkov, Chernyak '06-'09

- Equivalent to the holographic gadgets Gauge Transformations (different gauges = different transformations)
- Belief Propagation (BP) Loop Calculus/Series
 is one special choice of the gauge freedom

Are there other graphical models which are easy?

Holographic Algorithms

[Valiant '02-'08]

- reduction to dimers via
- "classical" one-to-one gadgets
 (e.g. Ising model to dimer model)
- "holographic" gadgets (e.g. ice model to dimer model)
- resulted in discovery of variety of new easy planar models

Gauge Transformations

[Chertkov, Chernyak '06-'09

- Equivalent to the holographic gadgets Gauge Transformations
 (different gauges = different transformations)
- Belief Propagation (BP) Loop Calculus/Series
 is one special choice of the gauge freedom

Are there other graphical models which are easy?

Holographic Algorithms

[Valiant '02-'08]

- reduction to dimers via
- "classical" one-to-one gadgets
 (e.g. Ising model to dimer model)
- "holographic" gadgets (e.g. ice model to dimer model)
- resulted in discovery of variety of new easy planar models

Gauge Transformations

[Chertkov, Chernyak '06-'09]

- Equivalent to the holographic gadgets Gauge Transformations (different gauges = different transformations)
- Belief Propagation (BP) Loop Calculus/Series
 is one special choice of the gauge freedom

BP+ for Planar [degree \leq 3]

Loop Series (general) [MC,Chernyak '06]

$$Z = Z_0 \cdot z, \ z \equiv 1 + \sum_C r_C$$

Summing 2-regular partition is easy!!

[MC,Chernyak,Teodorescu '08]

$$Z_s = Z_0 \cdot z_s, \quad z_s = 1 + \sum_{C \in \mathcal{G}}^{\forall a \in C, |\delta(a)|_C = 2} r_C$$

Efficient Approximate Scheme [Gomez, MC, Kappen '09]

http://arXiv.org/abs/0901.0786

Easy Models of degree ≤ 3 [MC,Chernyak,Teodorescu '08]

Generic planar problem is difficult

A planar problem is easy if

the factor functions satisfy

$$\forall \ a \in \mathcal{G} : \sum_{\vec{\sigma}_{a}} f_{a}(\vec{\sigma}_{a}) \times \prod_{b}^{(a,b) \in \mathcal{E}} \exp(\eta_{ab}\sigma_{ab})$$
$$\times (\sigma_{ab} - \tanh(\eta_{ab} + \eta_{ba})) = 0$$

where η are messages from a BP solution for the model

 i.e. when all (!!) "three-colorings" are zero after a BP-transformation [BP gauge= all (!!) "one-colorings" are zero]

"three-colorings" are shown in red

Easy Models of degree \leq 3 (II)

To describe the family of easy edge-binary models of degree not larger than three (partition function is reducible to Pfaffian of a $|\mathcal{G}_1| \times |\mathcal{G}_1|$ -dimensional skew-symmetric matrix) one needs to:

Item #1: Generate an arbitrary factor-function set which

satisfies: $\forall a: W^{(a)}(\vec{\sigma}_a) = 0$ if $\sum_{b \sim a} \sigma_{ab} \neq 0 \pmod{2}$

Item #2: Apply an arbitrary skew-orthogonal Gauge-transformation:

$$W^{(a)}(\pi_a) \to f_a(\pi_a) = \sum_{\pi'_a} \left(\prod_{b \sim a} G_{ab}(\pi_{ab}, \pi'_{ab}) \right) W^{(a)}(\pi'_a)$$

$$\forall \{a, b\} \in \mathcal{G}_1 : \sum_{\pi} G_{ab}(\pi, \pi') G_{ba}(\pi, \pi'') = \delta(\pi', \pi'')$$

$$Z = \sum_{\pi} \prod_{a \in \mathcal{G}_0} f_a(\pi_a) = \sum_{\pi} \prod_{a \in \mathcal{G}_0} \left(\sum_{\pi'_a} \left(\prod_{b \sim a} G_{ab}(\pi_{ab}, \pi'_{ab}) \right) W^{(a)}(\pi_a) \right)$$

Next Step:

Generalize construction (Item #1) to an arbitrary planar graph

Edge Binary Wick (EBW) Models

[Chernyak, MC '09]

$$Z_{EBW}(W) = \sum_{\gamma = \{\gamma_{ab}\} \in \mathcal{Z}_1(\mathcal{G}; \mathbb{Z}_2)} \prod_{b \in \mathcal{G}_0}^{\sum_{a \sim b} \gamma_{ab} \neq 0} W_{\{a_1, \cdots, a_{2k}\} \equiv \{a \mid a \sim b; \gamma_{ab} = 1\}}^{(b)}$$

number of crossings (mod 2)

$$\sum_{p,p'\in\xi}^{p<\rho'} C_{\alpha(p)} \cdot C_{\alpha(p)'}$$

$$W_{\{a_1,\cdots,a_{2k}\}}^{(b)} \equiv \sum_{\xi \in P([2k-1])} W_{\xi,a_1\cdots a_{2k}}^{(b)}, \quad W_{\xi,a_1\cdots a_{2k}}^{(b)} \equiv (-1)$$
Examples of 6-colorings of a EBW-model 6 vertex

Examples of 6-colorings of a EBW-model 6 vertex

 $W_{16}W_{25}W_{34}$ [zero crossing]

 $-W_{12}W_{35}W_{46}$ [one crossing]

 $W_{13}W_{25}W_{46}$ [two crossings] $-W_{14}W_{25}W_{36}$ [three crossings]

Any EBW model on a planar graph is EASY

- Equivalent to Gaussian Grassman Models on the same graph
- Partition function is Pfaffian of a $|\mathcal{G}_1| \times |\mathcal{G}_1|$ matrix

Related Grassmann/Fermion Models

Vertex Gaussian Grassmann Graphical (VG³) Models

$$\begin{split} Z_{\text{VG}^{3}}(\varsigma,\sigma;\mathbf{W}) &= \frac{\int \exp\left(\frac{1}{2}\sum_{(b\rightarrow a\rightarrow c)\in\mathcal{G}_{1}}\varphi_{ab}\varsigma_{bc}^{(a)}W_{bc}^{(a)}\varphi_{ac}\right)\exp\left(\frac{1}{2}\sum_{(a,b)\in\mathcal{G}_{1}}\varphi_{ab}\sigma_{ab}\varphi_{ba}\right)\prod\limits_{(a,b)}d\varphi_{ab}}{\int \exp\left(\frac{1}{2}\sum_{(a,b)\in\mathcal{G}_{1}}\varphi_{ab}\sigma_{ab}\varphi_{ba}\right)\prod\limits_{(a,b)}d\varphi_{ab}} \\ &= \frac{\text{Pf}(H(\varsigma,\sigma;\mathbf{W}))}{\text{Pf}(H(\varsigma,\sigma;0))}, \qquad H_{ij} = \left\{\begin{array}{cc} \varsigma_{bc}^{(a)}W_{bc}^{(a)}, & i=(a,b)\& j=(a,c), \text{ where } b\neq c\sim a, \\ \sigma_{ab}, & i=(a,b),\& j=(b,a). \end{array}\right. \end{split}$$

Grassmann (anti-commuting) variables: $\forall (a,b), (c,d) \in \mathcal{G}_1 \quad \varphi_{ab}\varphi_{cd} = -\varphi_{cd}\varphi_{ab}$ Berezin (formal) integration rules: $\forall (a,b) \in \mathcal{G}_1 : \int d\varphi_{ab} = 0, \quad \int \varphi_{ab} d\varphi_{ab} = 1$

Main Theorem of [Chernyak, MC '09]

- $\exists \sigma, \varsigma = \pm 1$: s.t. $Z_{VG^3}(\varsigma, \sigma; \mathbf{W}) = Z_{EBW}(\mathbf{W})$
- \bullet The special configuration of σ,ς corresponds to Kastelyan (spinor) orientation on the planar graph

Q:

To describe the family of easy edge-binary models on an arbitrary planar graph $\mathcal G$ (partition function is reducible to Pfaffian of a $|\mathcal G_1| \times |\mathcal G_1|$ -dimensional skew-symmetric matrix)

A: [constructive]

- Generate an arbitrary Vertex Gaussian Grassmann binary-Gauge (VG³) Model on the graph
- Fix the binary-gauge according to the Kasteleyn (spinor) rule on the extended graph
- Construct respective Edge-Binary Wick model on the original graph
- Apply an arbitrary skew-orthogonal (holographic) gauge/transformation

The partition function of the resulting model is an explicitly known Pfaffian

Future work

- Use the described hierarchy of easy planar models as a basis for efficient variational approximation of generic (difficult) planar problems. (The approach may also be useful for building efficient variational matrix-product state wave functions for quantum planar models.)
- Extend the construction to Wick Gaussian models on surface graphs of nonzero genus, in the spirit of Kastelyan, Gallucio-Loebl, Cimasoni-Reshetikhin.
- Study Wick Gaussian models on non-planar but Pfaffian orientable or k-Pfaffian orientable graphs (where any dimer model on surface graph of genus g is 2^{2g}-Pfaffian orientable).

Example (1): Statistical Physics

Ising model

$$\sigma_i = \pm 1$$

$$\mathcal{P}(\vec{\sigma}) = \mathbf{Z}^{-1} \exp\left(\sum_{(i,j)} J_{ij} \sigma_i \sigma_j\right)$$

 J_{ij} defines the graph (lattice)

Graphical Representation

Variables are usually associated with vertexes ... but transformation to the Forney graph (variables on the edges) is straightforward

- Ferromagnetic $(J_{ij} < 0)$, Anti-ferromagnetic $(J_{ij} > 0)$ and Frustrated/Glassy
- Magnetization (order parameter) and Ground State
- Thermodynamic Limit, $N \to \infty$
- Phase Transitions

Probabilistic Reconstruction (Statistical Inference)

$$\vec{\sigma}_{\mathsf{orig}}$$

$$\Rightarrow$$

$$\Rightarrow$$

original

codeword

 $ec{\sigma}_{\mathsf{orig}} \in \mathcal{C}$ noi

noisy channel

 $\mathcal{P}(\vec{x}|\vec{\sigma})$

corrupted

data: log-likelihood magnetic field statistical inference

possible preimage $\vec{\sigma} \in \mathcal{C}$

Maximum Likelihood

Marginalization

$$\mathsf{ML}(\vec{x}) = \arg\max_{\vec{\sigma}} \mathcal{P}(\vec{x}|\vec{\sigma})$$

$$\sigma_i^*(\vec{x}) = rg \max_{\sigma_i} \sum_{\vec{\sigma} \setminus \sigma_i} \mathcal{P}(\vec{x} | \vec{\sigma})$$

Counting (Partition Function): $Z(\vec{x}) = \sum_{\vec{\sigma}} \mathcal{P}(\vec{x}|\vec{\sigma})$

Probabilistic Reconstruction (Statistical Inference)

 $ec{\sigma}_{\mathsf{orig}}$

 \Rightarrow

 \vec{x}

 \Rightarrow

ō

origina

data

nois J

noisy channel $\mathcal{P}(ec{x}|ec{\sigma})$

corrupted data:

log-likelihood magnetic field statistical inference

possible preimage $\vec{\sigma} \in \mathcal{C}$

Maximum Likelihood

Marginalization

$$\mathsf{ML}(\vec{x}) = \arg\max_{\vec{\sigma}} \mathcal{P}(\vec{x}|\vec{\sigma})$$

$$\sigma_i^*(ec{x}) = rg \max_{\sigma_i} \sum_{ec{\sigma} \setminus \sigma_i} \mathcal{P}(ec{x} | ec{\sigma})$$

Counting (Partition Function): $Z(\vec{x}) = \sum_{\vec{\sigma}} \mathcal{P}(\vec{x}|\vec{\sigma})$

Probabilistic Reconstruction (Statistical Inference)

 $ec{\sigma}_{
m orig}$

 \Rightarrow

 \vec{x}

 \Rightarrow

ō

origina

data no

noisy channel $\mathcal{P}(ec{x}|ec{\sigma})$

corrupted data:

log-likelihood magnetic field statistical inference

possible preimage $ec{\sigma} \in \mathcal{C}$

Maximum Likelihood

Marginalization

$$\mathsf{ML}(\vec{x}) = \arg\max_{\vec{\sigma}} \mathcal{P}(\vec{x}|\vec{\sigma})$$

$$\sigma_i^*(ec{x}) = rg \max_{\sigma_i} \sum_{ec{\sigma} \setminus \sigma_i} \mathcal{P}(ec{x} | ec{\sigma})$$

Counting (Partition Function): $Z(\vec{x}) = \sum_{\vec{\sigma}} P(\vec{x}|\vec{\sigma})$

Probabilistic Reconstruction (Statistical Inference)

O orig

 \Rightarrow

 \vec{x}

 \Rightarrow

ō

origina

noisy channel $\mathcal{P}(\vec{x}|\vec{\sigma})$

corrupted data:

log-likelihood magnetic field statistical inference

possible preimage $\vec{\sigma} \in \mathcal{C}$

codew

Maximum Likelihood

Marginalization

$$\mathsf{ML}(\vec{x}) = \arg\max_{\vec{\sigma}} \mathcal{P}(\vec{x}|\vec{\sigma})$$

$$\sigma_i^*(ec{x}) = rg \max_{\sigma_i} \sum_{ec{\sigma} \setminus \sigma_i} \mathcal{P}(ec{x} | ec{\sigma})$$

Counting (Partition Function): $Z(\vec{x}) = \sum_{\vec{\sigma}} P(\vec{x}|\vec{\sigma})$

◆ Binary Graphical Models

Grassmann (fermion) Calculus for Pfaffians

Grassman Variables on Vertexes

$$\forall (a,b) \in \mathcal{G}_e: \quad \theta_a \theta_b + \theta_b \theta_a = 0 \quad \int d\theta = 0, \quad \int \theta d\theta = 1$$

Pfaffian as a Gaussian Berezin Integral over the Fermions

$$\int \exp\left(-\frac{1}{2}\vec{\theta}^{t}\hat{A}\vec{\theta}\right)d\vec{\theta} = \mathsf{Pf}(\hat{A}) = \sqrt{\mathsf{det}(\hat{A})}$$

◀ Pfaffian Formula

Local Gauge, G, Transformations

$$Z = \sum_{\vec{\sigma}} \prod_{a} f_{a}(\vec{\sigma}_{a}), \ \vec{\sigma}_{a} = (\sigma_{ab}, \sigma_{ac}, \cdots)$$

$$\sigma_{ab} = \sigma_{ba} = \pm 1$$

$$f_{a}(\vec{\sigma}_{a} = (\sigma_{ab}, \cdots)) \rightarrow \sum_{\sigma'_{ab}} G_{ab}(\sigma_{ab}, \sigma'_{ab}) f_{a}(\sigma'_{ab}, \cdots)$$

$$\sum_{\sigma} G_{ab}(\sigma_{ab}, \sigma') G_{ba}(\sigma_{ab}, \sigma'') = \delta(\sigma', \sigma'')$$

The partition function is invariant under any G-gauge!

$$Z = \sum_{\vec{\sigma}} \prod_{a} f_a(\vec{\sigma}_a) = \sum_{\vec{\sigma}} \prod_{a} \left(\sum_{\vec{\sigma}'_a} f_a(\vec{\sigma}'_a) \prod_{b \in a} G_{ab}(\sigma_{ab}, \sigma'_{ab}) \right)$$

Belief Propagation as a Gauge Fixing

Chertkov, Chernyak '06

$$Z = \sum_{\vec{\sigma}} \prod_{a} f_a(\vec{\sigma}_a) = \sum_{\sigma} \prod_{a} \left(\sum_{\vec{\sigma}'_a} f_a(\vec{\sigma}'_a) \prod_{b \in a} G_{ab}(\sigma_{ab}, \sigma'_{ab}) \right)$$

$$Z = \underbrace{Z_0(G)}_{\text{ground state}} + \underbrace{\sum_{\text{all possible colorings of the graph}} Z_c(G)}_{\vec{\sigma} \neq +\vec{1}, \text{excited states}$$

Belief Propagation Gauge

$\forall a \& \forall b \in a$:

$$\sum_{\vec{\sigma'}_a} f_a(\vec{\sigma'}) G_{ab}^{(bp)}(\sigma_{ab} = -1, \sigma'_{ab}) \prod_{c \in a}^{c \neq b} G_{ac}^{(bp)}(+1, \sigma'_{ac}) = 0$$

No loose BLUE=colored edges at any vertex of the graph!

Belief Propagation as a Gauge Fixing (II)

$\forall a \& \forall b \in a$:

$$\begin{cases}
\sum_{\sigma'a} f_{a}(\sigma') G_{ab}^{(bp)}(-1, \sigma'_{ab}) \prod_{c \in a}^{c \neq b} G_{ac}^{(bp)}(+1, \sigma'_{ac}) = 0 \\
\sum_{\sigma ab} G_{ab}(\sigma_{ab}, \sigma') G_{ba}(\sigma_{ab}, \sigma'') = \delta(\sigma', \sigma'')
\end{cases}
\Rightarrow
\begin{cases}
G_{ba}^{(bp)}(+1, \sigma'_{ab}) = \rho_{a}^{-1} \sum_{\sigma'a \setminus \sigma'_{ab}} f_{a}(\sigma') \prod_{c \in a}^{c \neq b} G_{ac}^{(bp)}(+1, \sigma'_{ac}) \\
\rho_{a} = \sum_{\sigma'a} f_{a}(\sigma') \prod_{c \in a}^{c \neq b} G_{ac}^{(bp)}(+1, \sigma'_{ac})
\end{cases}$$

Belief Propagation in terms of Messages

$$G_{ab}^{(bp)}(\underbrace{+\mathbf{1}},\sigma) = \frac{\exp\left(\sigma\eta_{ab}\right)}{2\sqrt{\cosh(\eta_{ab}+\eta_{ba})}}, \quad G_{ab}^{(bp)}(-1,\sigma) = \sigma\frac{\exp\left(-\sigma\eta_{ba}\right)}{2\sqrt{\cosh(\eta_{ab}+\eta_{ba})}} \Longrightarrow$$

$$\sum_{\vec{\sigma}_a \setminus \sigma_{ab}} f_a(\vec{\sigma}_a) \exp \left(\sum_{c \in a} \sigma_{ac} \eta_{ac} \right) \left(\sigma_{ab} - \tanh \left(\eta_{ab} + \eta_{ba} \right) \right) = 0$$

$$b_{a}(\vec{\sigma}_{a}) = \frac{f_{a}(\vec{\sigma}_{a}) \exp\left(\sum_{b \in a} \sigma_{ab} \eta_{ab}\right)}{\sum_{\vec{\sigma}_{a}} f_{a}(\vec{\sigma}_{a}) \exp\left(\sum_{b \in a} \sigma_{ab} \eta_{ab}\right)}, \quad b_{ab}(\sigma) = \frac{\exp(\sigma(\eta_{ab} + \eta_{ba}))}{\sum_{\sigma} \exp(\sigma(\eta_{ab} + \eta_{ba}))}$$

► Holographic Gadgets & Gauges

Exact (!!) expression in terms of BP

$$Z = \sum_{\vec{\sigma}_{\sigma}} \prod_{a} f_{a}(\vec{\sigma}_{a}) = Z_{0} \left(1 + \sum_{C} r(C) \right)$$

$$\prod_{c} \mu_{a}$$

$$r(C) = \frac{\prod\limits_{a \in C} \mu_a}{\prod\limits_{(ab) \in C} (1 - m_{ab}^2)} = \prod\limits_{a \in C} \tilde{\mu}_a$$

 $C \in Generalized Loops = Loops without loose ends$

$$\begin{split} m_{ab} &= \sum_{\vec{\sigma}_a} b_a^{(bp)}(\vec{\sigma}_a) \sigma_{ab} \\ \mu_a &= \sum_{\vec{\sigma}_a} b_a^{(bp)}(\vec{\sigma}_a) \prod_{b \in a, C} (\sigma_{ab} - m_{ab}) \end{split}$$

- The Loop Series is finite
- All terms in the series are calculated within BP
- BP is exact on a tree
- BP is a Gauge fixing condition.
 Other choices of Gauges would lead to different representation.

▶ Holographic Gadgets & Gauges

Ice Model [vertexes of max degree 3]

#PL-3-NAE-ICE

[Valiant '02]

- Input: A planar graph G = (V;E) of maximum degree 3.
- Output: The number of orientations (arrows) such that no node has all the edges directed towards it or away from it.

From arrows to binary variables

- Edge {a, b} is broken in two by insertion of a − b vertex
- Introduce binary variables s.t. if $a \rightarrow b \Rightarrow \pi_{a,a-b} = 0, \pi_{b,a-b} = 1$ $b \rightarrow a \Rightarrow \pi_{a,a-b} = 1, \pi_{b,a-b} = 0$

$$Z_{ice} = \sum_{\boldsymbol{\pi}'} \left(\prod_{a \in \mathcal{G}_0} f_a(\tilde{\boldsymbol{\pi}}_a) \right) \left(\prod_{\{a,b\} \in \mathcal{G}_1} g_{a-b}(\pi_{a,a-b}, \pi_{b,a-b}) \right)$$

$$f_{\textit{a}}(\pi_{\textit{a}}') = \left\{ \begin{array}{ll} 1, & \exists \ \textit{b}, \textit{c} \in \delta \textit{G}\left(\textit{a}\right), \text{ s.t. } \pi_{\textit{a},\textit{a}-\textit{b}} \neq \pi_{\textit{a},\textit{a}-\textit{c}} \\ 0, & \text{otherwise} \end{array} \right.$$

$$g_{a-b}(\pi'_a) = \begin{cases} 1 & \pi_{a,a-b} \neq \pi_{b,a-b} \\ 0, & \text{otherwise} \end{cases}$$

Ice Model [vertexes of max degree 3] II

General Gauge Transformation

$$\begin{split} f_{a}(\boldsymbol{\pi}_{a}) &\rightarrow \tilde{f}_{a}(\boldsymbol{\pi}_{a}) = \sum_{\boldsymbol{\pi}_{a}^{\prime}} \left(\prod_{b \sim a} G_{ab}(\boldsymbol{\pi}_{ab}, \boldsymbol{\pi}_{ab}^{\prime}) \right) f_{a}(\boldsymbol{\pi}_{a}^{\prime}) \\ \forall \{a, b\} \in \mathcal{G}_{1} : \sum_{\boldsymbol{\pi}} G_{ab}(\boldsymbol{\pi}, \boldsymbol{\pi}^{\prime}) G_{ba}(\boldsymbol{\pi}, \boldsymbol{\pi}^{\prime\prime}) = \delta(\boldsymbol{\pi}^{\prime}, \boldsymbol{\pi}^{\prime\prime}) \\ Z &= \sum_{\boldsymbol{\pi}} \prod_{a \in \mathcal{G}_{0}} \tilde{f}_{a}(\boldsymbol{\pi}_{a}) = \sum_{\boldsymbol{\pi}} \prod_{a \in \mathcal{G}_{0}} \left(\sum_{\boldsymbol{\pi}_{a}^{\prime}} \left(\prod_{b \sim a} G_{ab}(\boldsymbol{\pi}_{ab}, \boldsymbol{\pi}_{ab}^{\prime}) \right) f_{a}(\boldsymbol{\pi}_{a}) \right) \end{split}$$

Gauge Transformation for the Ice model

$$\begin{split} G_{a,a-b}^{(ice)} &= \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right) \quad \tilde{g}_{a-b}(\pi_a') = \left\{ \begin{array}{cc} 1, & \pi_{a,a-b} = \pi_{b,a-b} = 0 \\ -1, & \pi_{a,a-b} = \pi_{b,a-b} = 1 \\ 0, & \text{otherwise} \end{array} \right. \\ \tilde{f}_{a}(\pi_{a,a-1}, \pi_{a,a-2}, \pi_{a,a-3}) &= \frac{3}{\sqrt{2}} * \left\{ \begin{array}{cc} 1, & \pi_{a,a-1} = \pi_{a,a-2} = \pi_{a,a-3} = 0 \\ -1/3, & \pi_{a,a-1} = \pi_{a,a-2} = \pi_{a,a-3} = 0 \\ 0, & \text{otherwise} \end{array} \right. \end{split}$$

